
Journal of  Modern Technology & Engineering 

Vol.3, No.2, 2018, pp.117-124                                            

 

 
117 

 

 

THE NEURAL NETWORK APPLICATIONS TO CONTROL  

OF ROBOT MANIPULATORS 

 

Bekir Cirak
1* 

 
1
Department of Mechanical Engineering,  Engineering Faculty, Karamanoglu Mehmetbey 

University, Yunus Emre Campus, Karaman, Turkey 
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1.  Introduction   

 

Robotics is the science and engineering dealing with the design and application of 

reprogrammable multifunctional manipulators to move objects through variable 

programmed motions for the performance of a variety of tasks. Control of robots 

requires the solution of the complex inverse kinematic and dynamic equations, which is 

a computationally intensive process. Also the parameters of a robot such as moments of 

inertia and joint friction can not be determined precisely and obtaining meaningful 

model equations is difficult. Hence the idea of obtaining these relations based on 

measured inputoutput data is very appealing.Artificial neural networks can be thought 

of as a class of computational models for representing non-linear input-output 

mappings. Learning occurs by training with examples rather tha explicit programming. 

These properties make neural networks very attractive for robot control. 

 Neural networks consist of a very large number of simple processing elements 

called neurons, with each neuron connected to a large number of other neurons. The 

neurons are very simple by themselves, but the real power of neural networks lies in the 

interconnection between these simple neurons. The learning algorithms modify the 

strengths of these interconnections during a training phase. The desired mapping is thus 

encoded in these interconnections of a trained neural network to give immense parallel 

processing capabilities. Some of the important forms of neural network architectures 

used in robotics are the multilayer feedforward networks and the recurrent networks.The 

trajectory of a robot refers to the time history of position, velocity and acceleration for 

each degree of freedom. Trajectory generation involves the computation of motion 

functions such that each manipulator joint moves as a smooth function of time and the 

motion appears coordinated. A polynomial is generally fitted to a sequence of desired 
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points.The exact form of the required functions of actuator torque depend on the spatial 

and temporal attributes of the path taken by the end-effector as well as the mass 

properties of the links and payload, friction in the joints, etc. Study of robotics involves 

the study of following areas: trajectory generation, kinematics, dynamics and 

control(Abdelhameed, 2005) 

 

2.  Artificial neural networks 

 

The study of human brain functions triggered the development of the science of 

neural networks. It was Neuroscience that first attempted to explain the way that the 

human brain works on the basis of simple mathematical models. A neural network is 

composed of large numbers of highly interconnected processing elements known as 

neurons. The basic elements of an artificial neuron are shown in Fig 1. 

 

 

Figure 1. The style of neural computation 

An ANN consists of artificial neuronsinspired from biological neurons. Artificial 

neurons are typically organized in layers, so that each ANN includes: 

An input layer: for input data. This layer has as many neurons as the ANN’s input 

variants. Input layer neurons are connected to the neurons of the hidden layers or to 

neurons in the next layer. 

Hidden layers: Each hidden layer can have n neurons linked in different ways to the 

other hidden layers or tothe output layer. Hidden layer neurons can get their input 

through the input layer or some other hidden layer or in some cases, even the output 

layer. 

An output layer: through which the output vector passes. This layer has as many 

neurons as the ANN’s output variants. Output layer neurons can get their input through 

the input layer or the hidden layers. 

 The main feature of ANNs is their inherent capacity to learn, a key component of 

their intelligence. Learning is achieved through training, a repetitive process of gradual 

adaptation of the network’s parameters to the valuesrequired to solve a problem. There 

are three training methods: supervised training, unsupervised training and reinforced 

training. The most common training method is supervised  ining. An ANN is an 

information processing system consisting of simple processing elements, called 

artificial neurons. Therefore, it is essential to understand the function of an 

artificialneuron, which involves the following components: 

The input signals Xj  or input information. 

The synapses, which are accompanied by a synaptic weight. Each input signal Xj at the 

synapsis entry, which is connected to the neuron k, is multiplied with its respective 
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weight Wkj. The summing junction or adder Σ of the input signals, after they have been 

adapted with the use of their synaptic weights. 

The activation or transfer function φ(.) To limit the neuron’s output range in a 

closed unit interval [0,1] or [-1,1]. Any function can be used as activation function, and 

each ANN can have neurons with different function. There are various types of 

activation functions, including linear function, piecewise-linear function, step function, 

stochastic function, sigmoidal function etc. 

The output signal yk, which is essentially the result produced by the artificial neuron k. 

It is also referred to as the artificial neuron’s actual response (Cirak & Demirtas, 2014). 

Finally, the artificial neuron includes a term that is applied externally. This 

external term helps prevent errors in cases of zero input data. The above simplified 

structure of an artificial neuron can bemathematically expressed by equations (1) and 

(2). 

 

Uk=  𝑊𝑘 . 𝑋𝑗 + 𝑏𝑘
𝑛
𝑗=1                                                     (1) 

 

𝑌𝑘 = 𝜑(𝑈𝑘)                                                                (2) 

 

where  𝑋1,𝑋2, 𝑋3,… , 𝑋𝑛 :  the input signal 

𝑊𝑘1, 𝑊𝑘2, 𝑊𝑘3 , … . , 𝑊𝑘𝑛 : the synaptic weight of the input signals 

𝑈𝑘: the output of the summing junction Σ  

𝜑(∙): the activation function 

 Multilayer Perceptrons(MLPs) are a very common type of ANN. They belong to 

feed-forward ANNs and can be trained using the supervised training method. Their 

training is based on the error back propagation algorithm, which was first formulated by 

Paul Werbos (Werbos, 1974). A number of variants of the back-propagation algorithm 

have been developed and widely used to train MLPs. These variants include back-

propagation with momentum, Levenberg-Marquardt, Newton and Resilient back-

propagation. The data used are divided into three categories: training data, validation 

data and test data. As its name indicates, the first type of data is used at the training 

stage to adapt the neurons’ synaptic weights and bias. 

The second type is used to monitor the training process and prevent overfitting, 

while the third type is not involved in the training, but only used to evaluate and 

compare different models. Upon designing and developing an ANN, a series of trials are 

performed, modifying various elements until the most appropriate ANN is developed to 

solve a specific problem. These modifications initially involve the network’s 

architecture, as well as the training method and algorithm. They may also involve the 

number of the network’s hidden layers or the number of hidden neurons in every hidden 

layer. Another modification involves the activation function used by each artificial 

neuron, as well as the participation of each of the three sets used. 

Generally, the right selection of variants has a direct impact on the ANN’s 

reliability. The various trials that are performed need to be followed by an evaluation 

process in order to select the best network. This evaluation process is based on the 

results of the test set. To this end, one or more criteria are selected from a range of 

criteria, and finally the best ANN is the one whose values for the selected criteria are 

the lowest in the test set. The main evaluation criteria which are used include the mean 

square error (MSE), root mean square error (RMSE), mean relative error (MRE), and 

mean absolute error (MAE) (Ananthraman&Garg, 1993). 
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3. Manipulator kinematics and dynamics 

 Kinematics is the science of motion which treats motion without regard to the 

forces which cause it. Kinematics of manipulators refers to all of the geometrical and 

time based properties of motion. Forward kinematics involves the computation of the 

position and orientation of the end-effector of the manipulator, given the joint angles. It 

maps the joint space coordinates to the Cartesian space coordinates and can be 

represented as 𝑥 = 𝑓(𝜃) where θ is the vector of individual joint angles, and x is the 

end-effector location in Cartesian coordinates. The function f is a nonlinear function 

consisting of some trigonometric quantities. The mapping is relatively straightforward. 

Inverse kinematics involves the computation of all possible sets of joint angles which 

could be used to attain a desired position and orientation of the end-effector. Since the 

kinematic equations are nonlinear, the possibility of multiple solutions arises, and the 

resulting computations are much more intensive (Gullapalli et al., 1994). 

 Dynamics involves the study of forces required to cause motion and it is, like 

kinematics, a field of study in itself. In order for the robot to accelerate from rest, move 

at a constant velocity, and decelerate to a stop, a complex set of torque functions needs 

to be applied to the actuators at the joints. Dynamics involves the mapping between the 

joint torques and the resulting joint positions, velocities and accelerations and there are 

two problems involved. One, for controlling the manipulator to follow a desired path, 

the actuator torque functions can be calculated using dynamic equations of motion of 

the manipulator obtained from the Lagrange-Euler formulation or the Newton-Euler 

formulation. This computation involves inertia effects, Coriolis and centrifugal forces, 

friction, gravity and backlash in the case of gear driven robots (Bekey & Goldberg, 

1993). 

 

4.      Manipulator control 

 

 Control of mechanical manipulators involves solving trigonometric relationships 

between the links of the manipulator and dynamic equations to produce particular 

motion of the end-effector. As more number of degrees of freedom and nonlinearities 

are introduced these computations become less and less tractable. The manipulation 

tasks performed by living organisms seems to suggest that solving trigonometricand 

dynamic equations is a very inefficient way of controlling the 

manipulator.Connectionist approaches to robot control are grounded in these 

observationsof biological systems. The emphasis is on learning the mapping between 

thevarious variables without an accurate knowledge of the system parameters or 

theequations governing the system. This is important from the point of view ofrobot 

control since many robot parameters are not known precisely.Given the above 

considerations it is intuitively very appealing to use neuralnetworks to solve the 

complex robot control problem by just learning from examplesof the robots behavior. 

The tremendous amount of work being reportedin application of neural networks to 

robot control attests to this notion. Theneural network approaches to robot motion 

control can be classified into threecategories: inverse kinematic control, dynamic 

control and sensor-based motioncontrol. Each of these three approaches is reviewed in 

the following sections (Sundareshan & Askew, 1994). 

 Robotics problem can be decomposed into the following three levels: task 

planning, path planning and motion control. Task planning involves receiving 
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instructions about the task to be performed and management and coordination of the 

information. Trajectory planning involves the determination of a sequence of points 

through which the robot end effector should pass subject to some constraints. Motion 

control involves the generation of the necessary joint torques to drive the robot to 

follow the desired trajectory. Artificial neural networks can be applied to all of the 

above areas. This paper will focus on neural network applications to the motion control 

problem involving both kinematic and dynamic issues. 

 

 4.1.  Inverse kinematic control  

 Inverse kinematics refers to the problem of determining the robot joint angles to 

achieve a desired position and orientation of the robot end-effector. The Cartesian 

velocity of the tip of the arm can be related to the joint velocities by means of the 

Jacobian, 𝐽, as 

 

𝑥 = 𝐽(𝜃)𝜃                                                                    (3) 

where the elements of the Jacobian matrix 𝐽 are the partial derivatives 

 The manipulator Jacobian is a function of the joint angles and as the manipulator 

moves, 0 changes and hence the Jacobian changes (Yu et al., 2014) 

 At any particular instant, however, the Jacobian performs a linear transformation. 

Jacobians are thus time-varying linear transformations. The joint velocities for a desired 

Cartesian velocity can be obtained by solving the above equation to yield: 

𝜃 = 𝐽−1(𝜃)𝑥                                                               (4) 

 Thus, for a Cartesian space trajectory with velocity constraints, the desired motion 

of the joints can be calculated based on the above equation. This is referred to as 

velocity based inverse kinematic control or inverse Jacobian control. The scheme is 

shown in Fig. 2.  

 

Figure 2. The control loop of invers Jacobian 

 If the Jacobian matrix is not invertible, as happens at singular points, the above 

method is not feasible. The method is critically dependent on efficient inversionof the 

Jacobian for successful application (Yegerlehner & Meckl, 1993). The inverse Jacobian 

for a simple two link manipulator with rotary joints, and link lengths 𝑙1 and 𝑙2 is given 

by 

𝐽−1  𝜃 =
1

𝑙1𝑙2𝑠2
 

𝑙2𝑐12 𝑙2𝑠12

– 𝑙1𝑐1−𝑙2𝑐12 −𝑙1𝑠1−𝑙2𝑠12
                       (5) 
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where si and ci indicate the sine and cosine of angle 𝜃i, sij and cij indicate the sine and 

cosine of  (𝜃𝑖 +  𝜃𝑗)  respectively. The expression becomes more complex as the 

degrees of freedom of the manipulator increase. Also, the robot kinematic parameters 

need to be accurately known for successful operation of this method. Neural networks 

do not need a priori knowledge of these parameters and thus offer an alternative to this 

method. 

 

 4.2.   Robot dynamıcs control 

 Dynamic control of robots deals with the problem of computing the required 

torques for a desired motion. Since the motion of the links is coupled and the resuiting 

motion equations are highly nonlinear, the computations are considerably more complex 

than in the inverse kinematic case. The conventional way of controlling manipulators is 

by simple proportional integral derivative (PID) control, which is completely error 

driven. No attempt is made to decouple the motions of each joint and this causes errors 

which are suppressed by the error-driven control law. These controllers are based on the 

assumption of fixed robot parameters and are inadequate since the parameters of a robot 

depend on its configuration. When an accurate dynamic model of the mechanical 

manipulator is available, it may be used to calculate the joint drive torques for a desired 

trajectory (Santibañez et al., 2010) 

 A controller is usually connected serially to the plant to be controlled. When a 

feedforward neural network is used as a controller the output of the network is the 

control input to the plant. Since the desired control action is unknown, it is not possible 

to determine the network error required to train the network by using the 

backpropagation algorithm. So suitable training schemes need to be developed for the 

use of neural networks for direct control.The neural network model is shown in Fig. 3. 

The model was applied to learning trajectory control of the robotic manipulator. The 

neural network modelwas implemented only the basal three degrees of freedom were 

controlled. 

 
 

Figure 3. Manipulator control loop of inverse dynamic model 

 

 The total torque input to the manipulator 𝑇(𝑡) is a sum of the feedforward torque 

generated by the inverse-dynamics model  𝑇𝑖(𝑡), and the feedback torque 𝑇𝑓(𝑡). The 

desired trajectory is input to the model and the feedback torque is used as the error 

signal. Since the feedback torque is used as the error signal, the desire of the inverse 

dynamics of the manipulator is obtained by using the Lagrangian formulation. The 

structure is thus robot-dependent and the parameter values of the structure need to be 

estimated. Thus, this approach requires significant knowledge and needs to be 

implemented parallely to avoid the computation burden. However, the performance of 

the scheme is excellent. The model is learnt by repetitively experiencing a single 
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trajectory. As learning proceeds the inverse-dynamics model gradually takes the place 

of the feedback loop as the main controller. The trained network could control quite 

different and faster trajectories, and could also adapt to sudden changes in the dynamics 

of the manipulator. This overcomes the major drawback of the learning and adaptive 

control schemes discussed earlier: experiences obtained during learning could not be 

used for the execution of a quite different movement. Also the scheme requires 

considerably less memory than the table look-up approach (Liu & Wang, 2011). 

 The control system is set up as schematically illustrated in Figure 4.  

 

Figure 4.  Neural network based controller block diagram 

A trajectory planner is used to generate desired values of position, velocity and 

acceleration of the robot joints, for a prespecified trajectory. The neural network 

comprised the controller that represented pockets of the inverse dynamics of the system. 

It generates the actuator torques at the joints corresponding to the values of the input 

trajectory vector variables. The neural controller is used in tandem with a linear 

proportional derivative (PD) feedback controller. The torque input to the robot system is 

the sum of the torques generated by the feedforward neural controller and the feedback 

linear controller (Zhu & Zhang, 2011). 

 

5.       Conclusion 

Industrial robots are man-made and hence the designer has a significant amount of 

knowledge of the system, and this knowledge must be used for control of the system 

rather than using a neural network and starting from zero knowledge as happens with 

the random initialization of weights. Neural networks are essentially function 

approximators. The degree of accuracy of the approximation is very critical if neural 

networks are to be used in real world situations. Thus neural network approaches should 

be compared with conventional approaches to determine their real strengths and 

weaknesses.The variety of neural networks applications to robot motion-control 

problems reviewed in this paper highlight the increasing importance of neural networks 

in the development of intelligent systems.  

 The work done so far can be considered to be experimental in nature and lacks a 

firm theoretical foundation. There are no set guidelines as to the type of network 

architecture, number of layers, the necessary number of units per layer, the nonlinear 

transfer function to be used and the learning rate suitable for a particular problem. This 
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can partly be explained due to the relative youth of the field, but efforts are needed to 

develop a theoretical structure for the field. Recently, Fuzzy Logic Control (FLC) based 

on Fuzzy Set Theory is being used in the control of ill-defined and complex systems. 

The fusion of neural networks and fuzzy logic would help complement the advantages 

that each of them possess individually: learning can be incorporated infuzzy logic and a 

systematic structure can be incorporated in neural networks. 

 The hybrid approaches discussed in this section attempt to overcome the 

weaknesses of each individual decision making structure by combining it with another 

complimentary decision making structure. It is the authors' firm belief that these kinds 

of hybrid, hierarchical systems hold the key to intelligent control systems. 
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